资源类型

期刊论文 185

会议视频 1

年份

2023 19

2022 34

2021 23

2020 10

2019 16

2018 11

2017 20

2016 9

2015 5

2014 6

2013 4

2012 8

2011 4

2010 1

2009 7

2008 3

2007 1

展开 ︾

关键词

生物降解 3

微生物代谢 2

微生物安全 2

生物表面活性剂 2

2-羟基丁酸 1

3D细胞容器 1

CO2利用 1

SWOT 分析 1

乙烷干重整 1

乳液 1

二氧化碳 1

产业化应用 1

产业类型 1

产乙酸菌 1

产能 1

人工湿地 1

代谢作用 1

免疫调节 1

农业微生物;产业发展;微生物肥料;饲用微生物;微生物农药;酶制剂微生物;微生物种业 1

展开 ︾

检索范围:

排序: 展示方式:

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Differences in distributions, assembly mechanisms, and putative interactions of AOB and NOB at a large

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1722-0

摘要:

● Nitrifiers in WWTP were investigated at large spatial scale.

关键词: Activated sludge     Spatial distributions     Microbial assembly     Co-occurrence patterns     Nitrifying bacteria    

Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions

Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1035-x

摘要: Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.

关键词: Anammox     Metabolism     Metagenome     Ecological distribution     Microbial interactions    

Pt–C interactions in carbon-supported Pt-based electrocatalysts

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1677-1697 doi: 10.1007/s11705-023-2300-5

摘要: Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

关键词: Pt–C interactions     Pt-based materials     carbon support     electrocatalysis    

Water, energy and food interactions–Challenges and opportunities

Gustaf OLSSON

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 787-793 doi: 10.1007/s11783-013-0526-z

摘要: Water and energy are inextricably linked, and as a consequence both have to be addressed together. This is called the water-energy nexus. When access to either is limited, it becomes obvious that it is necessary to consider their interdependence. Population growth, climate change, urbanization, increasing living standards and food consumption will require an integrated approach where food, water and energy security are considered together. In this paper we examine water, energy and food security and their couplings. The nexus also creates conflicts between water use, energy extraction and generation as well as food production. Some of these conflicts are illustrated. It is argued that there is an urgent need for integrated planning and operation. Not only will better technology be needed, but also better integration of policies, organizations and political decisions.

关键词: water security     energy security     food security     water-energy nexus     water conflicts    

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 90-98 doi: 10.1007/s11705-015-1550-2

摘要: Microfluidic chip has been applied in various biological fields owing to its low-consumption of reagents, high throughput, fluidic controllability and integrity. The well-designed microscale intermediary is also ideal for the study of cell biology. Particularly, microfluidic chip is helpful for better understanding cell-cell interactions. A general survey of recent publications would help to generalize the designs of the co-culture chips with different features. With ingenious and combinational utilization, the chips facilitate the implementation of some special co-culture models that are highly concerned in a different spatial and temporal way.

关键词: microfluidic chip     co-culture     cell-cell interactions     review    

SUSTAINABLE CROP AND PASTURE SYSTEMS: FROM ABOVE- AND BELOWGROUND INTERACTIONS TO ECOSYSTEM MULTIFUNCTIONALITY

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 167-169 doi: 10.15302/J-FASE-2022446

摘要:

Intensive agriculture, characterized by strong reliance on excessive amount of external agrochemical inputs in simplified cropping systems has contributed successfully to feeding an increasing number of humans, but at the expense of severe resource and environmental costs. Consequently, the Earth is facing multifaceted challenges, including increasing food demand both in quantity and quality, global warming associated with extreme weather events, soil degradation and depletion of natural resources. To address some of these challenges, we have developed this Special Issue on Sustainable Crop and Pasture Systems for Frontiers of Agricultural Sciences and Engineering (FASE). The issue addresses the research frontiers of two main themes: (1) aboveground-belowground ecological and physiological mechanisms, processes and ecosystem functions; and (2) the synergies and trade-offs between multiple ecosystem services in sustainable crop and pasture systems. There are 10 articles in this Special Issue including review and research articles with contributions from Australia, China, France, the Netherlands, and the UK. The contributors are all highly-regarded scientists devoted to studies on mechanisms and applications of sustainable crop and pasture systems.

Sustainable crop and pasture systems have a potential to enhance the synergies in multiple ecosystem services, consisting of higher food production, lower environmental impacts and climate change mitigation. To innovate sustainable cropping systems requires deeper and comprehensive understanding of mechanisms underlying above- and belowground interactions. Hans Lambers and Wen-Feng Cong emphasized the importance of diversifying crop species or genotypes with complementary or facilitative functional traits. This will mediate key ecosystem processes related to water, carbon and nutrients, contributing to higher resource-use efficiency and enhancing synergies in ecosystem services ( https://doi.org/10.15302/J-FASE-2022444). Root functional traits such as root exudates are pivotal in nutrient mobilization, either directly mobilizing plant nutrients in the soil or indirectly so via modifications of the soil microbiome. Cathryn A. O'Sullivan and coworkers reported a novel role of root exudates from canola in inhibiting nitrification in soils. They found that these root exudates (called biological nitrogen (N) inhibitors) can significantly reduce nitrification rates of both Nitrosospira multiformis cultures and native nitrifying communities in soil. This would reduce nitrate losses, but increase plant N uptake and microbial N immobilization, subsequently benefiting the following cereal crops through mineralization of this organic N pool ( https://doi.org/10.15302/J-FASE-2021421). Jonathan Storkey and Andrew J. Macdonald used the longest-lasting grassland biodiversity experiment in the world to examine the relationships between plant functional traits and ecosystem services. They reported a strong trade-off between plots with high productivity, N inputs and soil organic carbon and plots with a large number of plant species with contrasting nutrient-acquisition strategies. An increasing proportion of forbs with greater longevity and lower leaf dry matter content can partly mitigate the trade-offs between plant diversity and productivity ( https://doi.org/10.15302/J-FASE-2021438).

John A. Raven further explored synergies or trade-offs of ecosystem services regulated by above- and belowground interactions, mainly functioning through energy, material and information pathways. Solar energy is the key driver for photosynthesis and transpiration, modulating the flow of water and nutrients in soils moving aboveground and the flow of carbohydrates feeding belowground biota. Information transfer can be through hydraulic, electrical and chemical signaling, regulating plant development, abiotic and biotic damage and resource excess and limitation ( https://doi.org/10.15302/J-FASE-2021433).

Timothy S. George and coauthors highlighted the importance of harnessing biodiversity principles and physiological mechanisms in diversified cropping systems to achieve agricultural sustainability. They demonstrate that crop diversification combined with optimized management such as minimum tillage and reduced fertilizer inputs can improve soil quality, promoting soil biotic activities and associated functions. This will reduce the reliance on agrochemical inputs and environmental impacts, and increase climatic resilience ( https://doi.org/10.15302/J-FASE-2021437). Ruqiang Zhang and coworkers applied the One Health concept to design healthy dairy farms. They employed a wide range of soil and plant diversity measures such as intercropping, crop rotation and flower strips at both field and landscape scales to reduce the inputs of fertilizers, pesticides as well as soil compaction caused by heavy machines. The biodiversity-based solutions can help dairy farmers maintain a healthy eco-environment, while producing high-quality milk ( https://doi.org/10.15302/J-FASE-2022445). Emily C. Cooledge and her colleagues show that introducing multispecies leys with perennial legumes and other forbs into arable rotations will achieve multiple ecosystem benefits. This occurs mainly in three ways—return of livestock manure, permanent soil cover and less disturbance of soil—which promote soil food web interactions and soil aggregate stability, subsequently sequestering more carbon in soils ( https://doi.org/10.15302/J-FASE-2021439). Ting Luo and coauthors used the sugarcane cropping system in China as an example and analyzed the current challenges and problems and proposed a wide range of crop, soil and input management practices such as crop rotation, strategic tillage and optimized nutrient management to achieve sustainable sugarcane cropping systems ( https://doi.org/10.15302/J-FASE-2022442).

Focusing on the multi-objective assessment of different cropping systems, Léa Kervroëdan and coworkers assessed the agronomic and environmental impacts of food, feed and mixed (food, feed and biogas) cropping systems. They found that mixed cropping systems had a greater potential of bioenergy production and agronomic performance, but also higher greenhouse gas emissions. This warrants long-term examination of whether short-term higher greenhouse gas emissions can be offset by long-term soil carbon sequestration in this system ( https://doi.org/10.15302/J-FASE-2021435). Jeroen C. J. Groot and Xiaolin Yang applied a new mathematical approach of evolutionary multi-objective optimization to 30 cropping systems practiced on the North China Plain with the aim of overcoming the trade-offs between revenues, energy and nutrient supply and groundwater depletion at a regional level. This approach allows national or regional policymakers to plan growing area of certain sustainable cropping systems ( https://doi.org/10.15302/J-FASE-2021434).

As the Guest Editors, we thank all authors and reviewers for their valuable contributions to this Special Issue on Sustainable Crop and Pasture Systems. We also thank the FASE editorial team for their professional support.

Dr. Wen-Feng Cong, Associate Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at Wageningen University in the Netherlands and conducted postdoctoral research at Aarhus University in Denmark. His research focuses on understanding the mechanisms underlying the positive effects of crop, genotype and cropping system diversity on soil carbon sequestration and soil phosphorus utilization, and applying the ecological mechanisms to design sustainable diversified cropping systems. He is author of over 30 papers in peer-reviewed scientific journals, including Trends in Plant ScienceTrends in Ecology & Evolution, and Global Change Biology. He is leading or participating in sustainable cropping systems related projects funded by the National Natural Science Foundation of China and the Chinese Academy of Engineering. He is acting as a member of the editorial board of Frontiers in Agronomyand Frontiers in Soil Science.

Dr. Hans Lambers, Emeritus Professor at the University of Western Australia and Distinguished Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at the University of Groningen in the Netherlands and conducted postdoctoral research in Australia and the Netherlands, before taking up a position of Professor of Plant Ecophysiology at Utrecht University in the Netherlands and then Professor of Plant Biology and Ecology at the University of Western Australia in Australia. His research focuses on understanding plant–soil interactions and plant nutrition, with an emphasis on Australian plants and crop legumes. He is author of over 550 papers in peer-reviewed scientific journals, including Annual Review of Plant Biology,Trends in Plant ScienceTrends in Ecology & EvolutionNew PhytologistPlant and Soil,Global Change Biology, andNature Plants. He is leading or participating in projects on plant nutrition funded by the Australian Research Council. He is the lead author of an influential textbook, Plant Physiological Ecology (1998, 2008, and 2019), Editor in Chief of Plant and Soil(1992–present), and Associate Editor in Chief ofFrontiers of Agricultural Sciences and Engineering

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 387-399 doi: 10.15302/J-FASE-2021414

摘要:

Modern agriculture needs to develop transition pathways toward agroecological, resilient and sustainable farming systems. One key pathway for such agroecological intensification is the diversification of cropping systems using intercropping and notably cereal-grain legume mixtures. Such mixtures or intercrops have the potential to increase and stabilize yields and improve cereal grain protein concentration in comparison to sole crops. Species mixtures are complex and the 4C approach is both a pedagogical and scientific way to represent the combination of four joint effects of Competition, Complementarity, Cooperation, and Compensation as processes or effects occurring simultaneously and dynamically between species over the whole cropping cycle. Competition is when plants have fairly similar requirements for abiotic resources in space and time, the result of all processes that occur when one species has a greater ability to use limiting resources (e.g., nutrients, water, space, light) than others. Complementarity is when plants grown together have different requirements for abiotic resources in space, time or form. Cooperation is when the modification of the environment by one species is beneficial to the other(s). Compensation is when the failure of one species is compensated by the other(s) because they differ in their sensitivity to abiotic stress. The 4C approach allows to assess the performance of arable intercropping versus classical sole cropping through understanding the use of abiotic resources.

 

关键词: compensation     competition     complementarity     cooperation     interspecific interactions     land equivalent ratio     light     nutrients     species mixtures     water    

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 399-406 doi: 10.1007/s11705-009-0253-y

摘要: -Carrageenan and -lactoglobulin (-lg) stabilized oil-in-water (O/W) emulsions, which can be used for the oral administration of bioactive but environmentally sensitive ingredients, have been successfully prepared. The effects of protein/polysaccharide ratios, total biopolymer concentration, environmental stress (thermal processing and sonication), and pH on the complex formation between -carrageenan and -lactoglobulin have been investigated. We found that -lactoglobulin and-carrageenan stabilized emulsions can be formed at pH values of 6.0, 4.0, and 3.4. However, the microstructures of emulsions stabilized by -lactoglobulin and -carrageenan was identified by optical microscopy, and it indicated that the emulsion prepared at pH 6.0 flocculated more extensively, while its hydrodynamic radius was much bigger than those prepared at pH 4.0 and 3.4. Regarding rheological properties, the emulsion of pH 6.0 showed a more solid-like behavior but with a lower viscosity than those of pH 4.0 and 3.4. The optimum concentration ranges for -lg and-carrageenan to form stable emulsions at pH 4.0 and 3.4 were 0.3wt-%―0.6wt-% and 0.4wt-%―0.7wt-%, respectively.

Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction

Hong LI,Ziding ZHANG

《农业科学与工程前沿(英文)》 2016年 第3卷 第2期   页码 102-112 doi: 10.15302/J-FASE-2016100

摘要: Plants are frequently affected by pathogen infections. To effectively defend against such infections, two major modes of innate immunity have evolved in plants; pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. Although the molecular components as well as the corresponding pathways involved in these two processes have been identified, many aspects of the molecular mechanisms of the plant immune system remain elusive. Recently, the rapid development of omics techniques (e.g., genomics, proteomics and transcriptomics) has provided a great opportunity to explore plant–pathogen interactions from a systems perspective and studies on protein–protein interactions (PPIs) between plants and pathogens have been carried out and characterized at the network level. In this review, we introduce experimental and computational identification methods of PPIs, popular PPI network analysis approaches, and existing bioinformatics resources/tools related to PPIs. Then, we focus on reviewing the progress in genome-wide PPI networks related to plant–pathogen interactions, including pathogen-centric PPI networks, plant-centric PPI networks and interspecies PPI networks between plants and pathogens. We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant–pathogen interactions and will offer some new opportunities for crop protection and improvement.

关键词: plant–pathogen interactions     systems biology     omics     plant immunity     protein–protein interaction     network    

Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy

《医学前沿(英文)》 2022年 第16卷 第3期   页码 307-321 doi: 10.1007/s11684-022-0927-0

摘要: The discovery of immune checkpoint inhibitors, such as PD-1/PD-L1 and CTLA-4, has played an important role in the development of cancer immunotherapy. However, immune-related adverse events often occur because of the enhanced immune response enabled by these agents. Antibiotics are widely applied in clinical treatment, and they are inevitably used in combination with immune checkpoint inhibitors. Clinical practice has revealed that antibiotics can weaken the therapeutic response to immune checkpoint inhibitors. Studies have shown that the gut microbiota is essential for the interaction between immune checkpoint inhibitors and antibiotics, although the exact mechanisms remain unclear. This review focuses on the interactions between immune checkpoint inhibitors and antibiotics, with an in-depth discussion about the mechanisms and therapeutic potential of modulating gut microbiota, as well as other new combination strategies.

关键词: tumor immunotherapy     immune checkpoint inhibitor     antibiotics     gut microbiota     drug–drug interaction    

Toxicity models of metal mixtures established on the basis of “additivity” and “interactions

Yang Liu,Martina G. Vijver,Bo Pan,Willie J. G. M. Peijnenburg

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0916-8

摘要: · No preference is set between CA and IA models to assess toxicity of metal mixtures. · Increased model complexity does not, by itself, lead to improved performance. · Not all significant deviations have biological meaning due to poor reproducibility. · Interactions are suggested to incorporate when they are significant and repeated. Observed effects of metal mixtures on animals and plants often differ from the estimates, which are commonly calculated by adding up the biological responses of individual metals. This difference from additivity is commonly referred to as being a consequence of specific interactions between metals. The science of how to quantify metal interactions and whether to include them in risk assessment models is in its infancy. This review summarizes the existing predictive tools for evaluating the combined toxicity of metals present in mixtures and indicates the advantages and disadvantages of each method. We intend to provide eco-toxicologists with background information on how to make good use of the tools and how to advance the methods for assessing toxicity of metal mixtures. It is concluded that statistically significant deviations from additivity are not necessarily biologically relevant. Incorporation of interactions between metals in a model does not on forehand mean that the model is more accurate than a model developed based on additivity only. It is recommended to first use a relatively simple method for effect prediction of uninvestigated metal mixtures. To improve the reliability of toxicity modeling for metal mixtures, further efforts should focus on balancing the relationship between the significance of statistics and the biological meaning, and unraveling the toxicity mechanisms of metals and their mixtures.

关键词: Metal     Mixtures     Toxicity     Additivity     Modeling     Interactions    

of the transport and fate of airborne droplets in a ventilated office: The role of droplet−droplet interactions

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1465-8

摘要:

• Coulomb and Lennard−Jones forces were considered for droplet interactions.

关键词: Droplet interactions     Aerosols     Colloids     CFD     Transport     Fate    

Understanding building-occupant-microbiome interactions toward healthy built environments: A review

Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1357-3

摘要: Abstract • The built environment, occupants, and microbiomes constitute an integrated ecosystem. • This review summarizes research progress which has focused primarily on microbiomes. • Critical research needs include studying impacts of occupant behaviors on microbiomes. Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.

关键词: Microbiome     Built Environment     Occupant     Health    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

标题 作者 时间 类型 操作

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Differences in distributions, assembly mechanisms, and putative interactions of AOB and NOB at a large

期刊论文

Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions

Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li

期刊论文

Pt–C interactions in carbon-supported Pt-based electrocatalysts

期刊论文

Water, energy and food interactions–Challenges and opportunities

Gustaf OLSSON

期刊论文

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

期刊论文

SUSTAINABLE CROP AND PASTURE SYSTEMS: FROM ABOVE- AND BELOWGROUND INTERACTIONS TO ECOSYSTEM MULTIFUNCTIONALITY

期刊论文

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

期刊论文

Biopolymer-stabilized emulsions on the basis of interactions between β -lactoglobulin and ι -carrageenan

Qiaomei RU, Younghee CHO, Qingrong HUANG,

期刊论文

Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction

Hong LI,Ziding ZHANG

期刊论文

Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy

期刊论文

Toxicity models of metal mixtures established on the basis of “additivity” and “interactions

Yang Liu,Martina G. Vijver,Bo Pan,Willie J. G. M. Peijnenburg

期刊论文

of the transport and fate of airborne droplets in a ventilated office: The role of droplet−droplet interactions

期刊论文

Understanding building-occupant-microbiome interactions toward healthy built environments: A review

Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文